Cosmologists have presented a theoretical advance that can explain both the nature of invisible dark matter and the large-scale structure of the universe known as cosmic red.

The research, led by the University of Toronto and published in the Journal of Cosmology and Astroparticle Physics, suggests that the «clumping problem,» which focuses on the distribution unexpectedly uniformity of matter on a large scale throughout the cosmos, it may be a sign that dark matter is composed of hypothetical ultralight particles called axions. The implications of proving the existence of hard-to-detect axions extend beyond the comprehension of dark matter and could address fundamental questions about the nature of the universe itself.

«If confirmed with future telescope observations and laboratory experimentsFinding dark matter axion would be one of the most important discoveries of this century,» said lead author Keir Rogers, from the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto.

«At the same time, our results suggesting an explanation of why the universe it’s less lumpy than we thought, an observation that has become increasingly clear over the past decade and currently leaves uncertainty our theory of the universe«.

Dark matter

Dark matter, which comprises 85 percent of the mass in the universe, is invisible because does not interact with light. Scientists study its gravitational effects on visible matter to understand how it is distributed in the universe.

A leading theory proposes that the dark matter is made of axions, described in quantum mechanics as «fuzzy» due to their wave behavior. Unlike discrete point particles, axions can have wavelengths longer than entire galaxies. This blurring influences the formation and distribution of dark matter, which could explain why the universe is less lumpy than predicted in an axionless universe.

This lack of lumps has been observed in large galaxy surveys, which challenges the other prevailing theory that dark matter consists only of weakly interacting heavy subatomic particles called WIMPs. Despite experiments such as the Large Hadron Collider, no evidence supporting the existence of WIMP.

«In science, it’s when ideas break down that new discoveries are made and old problems are solved,» says Rogers.

data comparison

For the study, the research team looked at relic light observations of the Big Bangknown as the Cosmic Microwave Background (CMB), obtained from the Planck 2018 surveys, the Atacama Cosmology Telescope and the South Pole Telescope.

Related news

the researchers compared these CMB data with the galaxy cluster data of the Baryon Oscillation Spectroscopic Survey (BOSS), which maps the positions of approximately one million galaxies in the nearby universe. By studying the distribution of galaxies, which reflects the behavior of dark matter under gravitational forces, they measured fluctuations in the amount of matter throughout the universe and confirmed its reduced clumps compared to predictions.

The researchers then performed computer simulations to predict the appearance of relics of light and the distribution of galaxies in a universe with long waves of dark matter. These calculations were aligned with the CMB data from the Big Bang and the data from galaxy clusterwhich supports the notion that fuzzy axions could explain the crowding problem.